Stochastic Image Reconstruction from Local Histograms of Gradient Orientation
نویسندگان
چکیده
Many image processing algorithms rely on local descriptors extracted around selected points of interest. Motivated by privacy issues, several authors have recently studied the possibility of image reconstruction from these descriptors, and proposed reconstruction methods performing local inference using a database of images. In this paper we tackle the problem of image reconstruction from local histograms of gradient orientation, obtained from simplified SIFT descriptors. We propose two reconstruction models based on Poisson editing and on the combination of multiscale orientation fields. These models are able to recover global shapes and many geometric details of images. They compare well to state of the art results, without requiring the use of any external database.
منابع مشابه
Local gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملStochastic reconstruction of carbon fiber paper gas diffusion layers of PEFCs: A comparative study
A 3D microstructure of the non-woven gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs) is reconstructed using a stochastic method. For a commercial GDL, due to the planar orientation of the fibers in the GDL, 2D SEM image of the GDL surface is used to estimate the orientation of the carbon fibers in the domain. Two more microstructures with different fiber orientations are g...
متن کاملBIG-OH: BInarization of gradient orientation histograms
a r t i c l e i n f o Extracting local keypoints and keypoint descriptions from images is a primary step for many computer vision and image retrieval applications. In the literature, many researchers have proposed methods for representing local texture around keypoints with varying levels of robustness to photometric and geometric transformations. Gradient-based descriptors such as the Scale In...
متن کاملRepresenting Multiple Orientation in 2D with Orientation Channel Histograms
The channel representation is a simple yet powerful representation of scalars and vectors. It is especially suited for representation of several scalars at the same time without mixing them up. This report is partly intended to serve as a simple illustration of the channel representation. The report shows how the channels can be used to represent multiple orientations in two dimensions. The ide...
متن کاملDiscriminative histograms of local dominant orientation (D-HLDO) for biometric image feature extraction
This paper presents a simple and robust method, namely discriminative histograms of local dominant orientation (D-HLDO), for biometric image feature extraction. In D-HLDO, the local dominant orientation map and the corresponding relative energy map are obtained by applying the singular value decomposition (SVD) to the collected gradient vectors over a local patch. The dominant orientation map a...
متن کامل